153 research outputs found

    Joint Training for Neural Machine Translation Models with Monolingual Data

    Full text link
    Monolingual data have been demonstrated to be helpful in improving translation quality of both statistical machine translation (SMT) systems and neural machine translation (NMT) systems, especially in resource-poor or domain adaptation tasks where parallel data are not rich enough. In this paper, we propose a novel approach to better leveraging monolingual data for neural machine translation by jointly learning source-to-target and target-to-source NMT models for a language pair with a joint EM optimization method. The training process starts with two initial NMT models pre-trained on parallel data for each direction, and these two models are iteratively updated by incrementally decreasing translation losses on training data. In each iteration step, both NMT models are first used to translate monolingual data from one language to the other, forming pseudo-training data of the other NMT model. Then two new NMT models are learnt from parallel data together with the pseudo training data. Both NMT models are expected to be improved and better pseudo-training data can be generated in next step. Experiment results on Chinese-English and English-German translation tasks show that our approach can simultaneously improve translation quality of source-to-target and target-to-source models, significantly outperforming strong baseline systems which are enhanced with monolingual data for model training including back-translation.Comment: Accepted by AAAI 201

    Agent Behavior Prediction and Its Generalization Analysis

    Full text link
    Machine learning algorithms have been applied to predict agent behaviors in real-world dynamic systems, such as advertiser behaviors in sponsored search and worker behaviors in crowdsourcing. The behavior data in these systems are generated by live agents: once the systems change due to the adoption of the prediction models learnt from the behavior data, agents will observe and respond to these changes by changing their own behaviors accordingly. As a result, the behavior data will evolve and will not be identically and independently distributed, posing great challenges to the theoretical analysis on the machine learning algorithms for behavior prediction. To tackle this challenge, in this paper, we propose to use Markov Chain in Random Environments (MCRE) to describe the behavior data, and perform generalization analysis of the machine learning algorithms on its basis. Since the one-step transition probability matrix of MCRE depends on both previous states and the random environment, conventional techniques for generalization analysis cannot be directly applied. To address this issue, we propose a novel technique that transforms the original MCRE into a higher-dimensional time-homogeneous Markov chain. The new Markov chain involves more variables but is more regular, and thus easier to deal with. We prove the convergence of the new Markov chain when time approaches infinity. Then we prove a generalization bound for the machine learning algorithms on the behavior data generated by the new Markov chain, which depends on both the Markovian parameters and the covering number of the function class compounded by the loss function for behavior prediction and the behavior prediction model. To the best of our knowledge, this is the first work that performs the generalization analysis on data generated by complex processes in real-world dynamic systems
    • …
    corecore